7 research outputs found

    Robust model predictive control for linear systems subject to norm-bounded model Uncertainties and Disturbances: An Implementation to industrial directional drilling system

    Get PDF
    Model Predictive Control (MPC) refers to a class of receding horizon algorithms in which the current control action is computed by solving online, at each sampling instant, a constrained optimization problem. MPC has been widely implemented within the industry, due to its ability to deal with multivariable processes and to explicitly consider any physical constraints within the optimal control problem in a straightforward manner. However, the presence of uncertainty, whether in the form of additive disturbances, state estimation error or plant-model mismatch, and the robust constraints satisfaction and stability, remain an active area of research. The family of predictive control algorithms, which explicitly take account of process uncertainties/disturbances whilst guaranteeing robust constraint satisfaction and performance is referred to as Robust MPC (RMPC) schemes. In this thesis, RMPC algorithms based on Linear Matrix Inequality (LMI) optimization are investigated, with the overall aim of improving robustness and control performance, while maintaining conservativeness and computation burden at low levels. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this issue, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques and the Elimination Lemma. The proposed algorithm computes the state-feedback gain and perturbation online by solving an LMI optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. In the case that only (noisy) output measurements are available, an output-feedback RMPC algorithm is also derived for norm-bounded uncertain systems. The novelty lies in the fact that, instead of using an offline estimation scheme or a fixed linear observer, the past input/output data is used within a Robust Moving Horizon Estimation (RMHE) scheme to compute (tight) bounds on the current state. These current state bounds are then used within the RMPC control algorithm. To reduce conservatism, the output-feedback control gain and control perturbation are both explicitly considered as decision variables in the online LMI optimization. Finally, the aforementioned robust control strategies are applied in an industrial directional drilling configuration and their performance is illustrated by simulations. A rotary steerable system (RSS) is a drilling technology that has been extensively studied over the last 20 years in hydrocarbon exploration and is used to drill complex curved borehole trajectories. RSSs are commonly treated as dynamic robotic actuator systems, driven by a reference signal and typically controlled by using a feedback loop control law. However, due to spatial delays, parametric uncertainties, and the presence of disturbances in such an unpredictable working environment, designing such control laws is not a straightforward process. Furthermore, due to their inherent delayed feedback, described by delay differential equations (DDE), directional drilling systems have the potential to become unstable given the requisite conditions. To address this problem, a simplified model described by ordinary differential equations (ODE) is first proposed, and then taking into account disturbances and system uncertainties that arise from design approximations, the proposed RMPC algorithm is used to automate the directional drilling system.Open Acces

    Robust Model Predictive Control Framework for Energy-Optimal Adaptive Cruise Control of Battery Electric Vehicles

    Get PDF
    The autonomous vehicle following problem has been extensively studied for at least two decades with the rapid development of intelligent transport systems. In this context, this paper proposes a robust model predictive control (RMPC) method that aims to find the energy-efficient following velocity of an ego battery electric vehicle and to guarantee a safe rearend distance in the presence of disturbances and modelling errors. The optimisation problem is formulated in the space domain so that the overall problem can be convexified in the form of a semi-definite program, which ensures a rapid solving speed and a unique solution. Simulations are carried out to provide numerical comparisons with a nominal model predictive control (MPC) scheme. It is shown that the RMPC guarantees robust constraint satisfaction for the closed-loop system whereas constraints may be violated when the nominal MPC is in use. Moreover, the impact of the prediction horizon length on optimality is investigated, showing that a finely tuned horizon could produce significant energy savings

    A Computationally Efficient Robust Model Predictive Control Framework for Ecological Adaptive Cruise Control Strategy of Electric Vehicles

    Full text link
    The recent advancement in vehicular networking technology provides novel solutions for designing intelligent and sustainable vehicle motion controllers. This work addresses a car-following task, where the feedback linearisation method is combined with a robust model predictive control (RMPC) scheme to safely, optimally and efficiently control a connected electric vehicle. In particular, the nonlinear dynamics are linearised through a feedback linearisation method to maintain an efficient computational speed and to guarantee global optimality. At the same time, the inevitable model mismatch is dealt with by the RMPC design. The control objective of the RMPC is to optimise the electric energy efficiency of the ego vehicle with consideration of a bounded model mismatch disturbance subject to satisfaction of physical and safety constraints. Numerical results first verify the validity and robustness through a comparison between the proposed RMPC and a nominal MPC. Further investigation into the performance of the proposed method reveals a higher energy efficiency and passenger comfort level as compared to a recently proposed benchmark method using the space-domain modelling approach.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A Robust Model Predictive Control Framework for Ecological Adaptive Cruise Control Strategy of Electric Vehicles

    Get PDF
    The recent advancement in vehicular networking technology provides novel solutions for designing intelligent and sustainable vehicle motion controllers. This work addresses a car-following task, where the feedback linearisation method is combined with a robust model predictive control (RMPC) scheme to safely, optimally and efficiently control a connected electric vehicle. In particular, the nonlinear dynamics are linearised through a feedback linearisation method to maintain an efficient computational speed and to guarantee global optimality. At the same time, the inevitable model mismatch is dealt with by the RMPC design. The control objective of the RMPC is to optimise the electric energy efficiency of the ego vehicle with consideration of a bounded model mismatch disturbance subject to satisfaction of physical and safety constraints. Numerical results first verify the validity and robustness through a comparison between the proposed RMPC and a nominal MPC. Further investigation into the performance of the proposed method reveals a higher energy efficiency and passenger comfort level as compared to a recently proposed benchmark method using the space-domain modelling approach

    A Real-Time Robust Ecological-Adaptive Cruise Control Strategy for Battery Electric Vehicles

    Full text link
    This work addresses the ecological-adaptive cruise control problem for connected electric vehicles by a computationally efficient and robust control strategy. The problem is formulated in the space-domain with a realistic description of the nonlinear electric powertrain model and motion dynamics to yield a convex optimal control problem (OCP). The OCP is approached by a robust model predictive control (RMPC) method, which handles various uncertainties due to the modelling mismatch and inaccurate information of the leading vehicle. The RMPC problem is solved by semi-definite programming relaxation and single linear matrix inequality (sLMI) techniques for further enhanced computational efficiency. The performance of the proposed real-time robust ecological-adaptive cruise control (REACC) method is evaluated by utilising an urban driving cycle experimentally collected on a real-world route in London UK with practical disturbances including modelling mismatches on air-drag coefficients, tyre-rolling resistance coefficients, and road slope angles. Its robustness is verified through the comparison with a nominal MPC which is shown to result in speed limit constraint violations. The energy economy of the proposed method outperforms a state-of-the-art time-domain RMPC scheme, as a more precisely fitted convex powertrain model can be integrated into the space-domain scheme. The additional comparison with a traditional constant distance following strategy (CDFS) further verifies the effectiveness of the proposed REACC. Finally, it is verified that the REACC can be potentially implemented in real-time owing to the sLMI and resulting convex algorithm.Comment: 15 pages and 12 figure

    Serum miRNAs as biomarkers for the rare types of muscular dystrophy

    No full text
    Muscular dystrophies are a group of disorders that cause progressive muscle weakness. There is an increasing interest for the development of biomarkers for these disorders and specifically for Duchene Muscular Dystrophy. Limited research however, has been performed on the biomarkers' development for the most rare muscular dystrophies, like the Facioscapulohumeral Muscular Dystrophy, Limb-Girdle Muscular Dystrophy and Myotonic Dystrophy type 2. Here, we aimed to identify novel serum-based miRNA biomarkers for these rare muscular dystrophies, through high-throughput next-generation RNA sequencing. We identified many miRNAs that associate with muscular dystrophy patients compared to controls. Based on a series of selection criteria, the two best candidate miRNAs for each of these disorders were chosen and validated in a larger number of patients. Our results showed that miR-223-3p and miR-206 are promising serum-based biomarkers for Facioscapulohumeral Muscular Dystrophy type 1, miR-143-3p and miR-486-3p for Limb-Girdle Muscular Dystrophy type 2A whereas miR-363-3p and miR-25-3p associate with Myotonic Dystrophy type 2. Some of the identified miRNAs were significantly elevated in the serum of the patients compared to controls, whereas some others were lower. In conclusion, we provide new evidence that certain circulating miRNAs may be used as biomarkers for three types of rare muscular dystrophies.This Project (POST-DOC/0916/0235) was co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation. A.C.K, A.O., M.T. and G.M.S. were funded by the European Commission Research Executive Agency Grant BIORISE [number 669026], under the Spreading Excellence, Widening Participation, Science with and for Society Framework. H.L. receives support from the Canadian Institutes of Health Research (Foundation Grant FDN-167281), the Canadian Institutes of Health Research and Muscular Dystrophy Canada (Network Catalyst Grant for NMD4C), the Canada Foundation for Innovation (CFI-JELF 38412), and the Canada Research Chairs program (Canada Research Chair in Neuromuscular Genomics and Health, 950-232279
    corecore